Technical data

Accuracy Class (SS 4060106):

Basic Current, Ib **Current Range*** Starting Current**

Max. Fuse Frequency

Internal Frequency (Meter Constant)

Temperature Range Temperature Dependence

Rated Impulse Withstand Voltage

Degree of Protection

Max. wire size Pulse Output

- Current

- Voltage - Frequency

- Impulse length

max 20 mA 10 to 40 V DC

 $2(\pm 2\%)$

0.5 to 63 A

640 imp/kWh -40°C to +60°C

< 0.05 %/° C

10 A

50 mA

63 A 50-60 Hz

12 kV **IP 20**

16 mm²

10 imp/kWh or 640 imp/kWh

180 ms (average) 140 ms (minimum)

Material

Enclosures are made of polycarbonate with superior impact strength qualities. Terminal blocks are made of polyamide.

Terminals

The terminal clamps are in the form of tunnels, which assure a very reliable connection of the conductor.

The marking of the terminalblock is in accordance with DIN 43856.

Options

The pulse output is as standard a passive transistor with max. current 20 mA.

As an option the output can be delivered as relay output.

Relay Pulse output

Current (max):

300 mA

Voltage (max):

250 V AC/DC

Power (max):

30 W

Temp.Range: Working life:

 $-38^{\circ} \text{C} + 75^{\circ} \text{C}$

10⁶ op. at 30 W

The pulse output has as standard pulselength 180 ms and pulse frequency 10 or 640 imp/kWh.

Other pulse lengths and pulse frequencies can be delivered as an option on special request.

Pulse length

From 70 ms to 1000 ms in step of 10 ms.

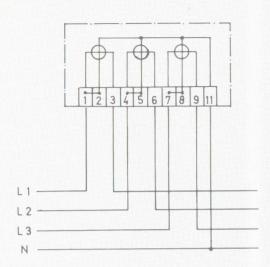
Pulse frequency

Direct measuring ≤ 63 A: 1 to 10 imp/kWh Current transformer ≤ 6 A (secondary):

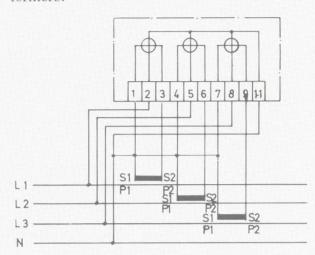
Transistor Relay to 200 ms 1 to 1280 imp/kWh.

1 to 640 imp/kWh 1 to 128 imp/kWh

> 200 to 1000 ms

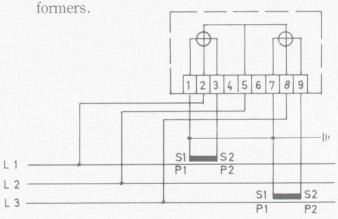

^{*} The range in which the meter's accuracy has been tested. ** The currant at which the meter start to register energy.

Wiring diagrams


Wh 3063

Wh 3063

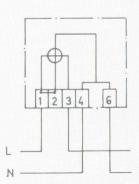
Measuring over 63A via external current transformers.

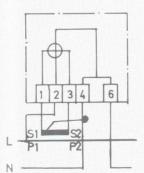


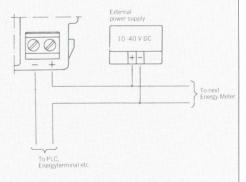
Wh 3163 Wh 3363 Wh 3463 Wh 3563

Wh 3163 Wh 3363 Wh 3463 Wh 3563

L1 L2 L3 Measuring over 63 A via external current transformers




Wh 1063 Wh 1263


Wh 1063 Wh 1263

Wiring of pulse output circuit

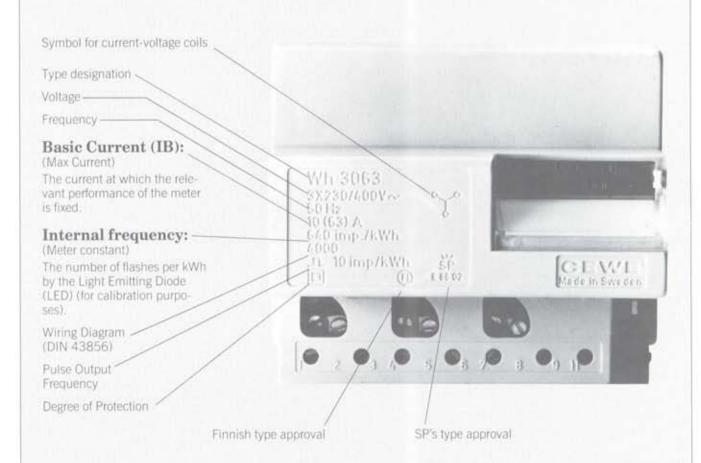
Measuring over 63 A via external current transformers.

Note! It is important that the current transformer is connected with correct current direction $(P1 \rightarrow P2, S1 \rightarrow S2)$. See above wiring diagrams.

All meters can also be connected via voltage transformers. For improved resolution 640 pulses/kWh output is recommended when using current-/voltage transformer. Voltage supply shall be fuse protected.

Symbols for Energy meters

Meters with 1 driving system


which has one current and one voltage coil (for single phase, 2-conductor circuits). Meters with 2 driving systems

each with a voltage and current coil, connected as per the "two-wattmeter method" (for three phase, 3conductor circuits). Meters with 3 driving systems

each with a voltage and current coil, connected as per the "three-wattmeter method" (for three phase, 4conductor circuits).

Standards

The meters comply to the following standards: SS 436 15 22 Ability to withstand electrostatic discharge - Environmental Class Electricitymeter Class 2 IEC 521 PE4 (IEC 801-2) DIN 43 880 Mounting Dimensions DIN 43 856 Terminal markings SS 436 15 23 Ability to withstand electromagnetic fields - Environmental Class Terminal dimensions DIN 43 857 PR3 (IEC 801-3) SS 406 01 06 Electricitymeter Class 2 (IEC 521) Electricitymeter (IEC 529) IEC 65 Personal Safety Requirements for SS 406 01 07 Electronic Devices Protective Class II SS 436 15 03 Ability to withstand electrical interference – Environmental Class PL3 (IEC 60-2 and IEC 255 §§ 4,5 & 11)